
 Advanced Scientific Computing Research
FY 2006 Accomplishment

Mathematical Programming without Derivatives –
Bringing Optimization to the Masses

Tamara G. Kolda* and Joshua D. Griffin, Sandia National Laboratories

Summary

Optimization is often daunting to engineers and scientists because it involves complicated
derivative calculations and the software is hard to use. We have developed robust derivative-
free methods and software that are easy to use, run efficiently in parallel (even when the
scientist’s code is not parallel), and are mathematically proven to converge.

Our focus is on solving real-world
optimization problems from science and
engineering – the types of problems that are
based on complicated (perhaps even
stochastic) simulations that are expensive
and do not have any derivative information.

* (925) 294-4769, tgkolda@sandia.gov

For example, we are currently collaborating
on a problem in nuclear safety studies where
we want to determine the worst-case damage
if a component is dropped. Each “function
evaluation” requires meshing, a parallel
simulation (that takes 1-15 hours on ten
processors of an advanced parallel
supercomputer), and analysis of the
simulation output to determine the final
objective value, i.e., the damage.

Few optimization methods or codes can
solve such problems and fewer still can do
so efficiently. We have designed a parallel
and asynchronous derivative-free
optimization method that reliably and
robustly solves these types of optimization
problems. Allowing different simulations to
be run independently and asynchronously is
the key to our success. Much time is wasted
on supercomputers for synchronization, but
our methods fix these problems by more
efficiently making use of available

resources. Over and over again, our methods
have proven to be faster than synchronous
implementations; see Figure 1.

Ti
m

e

W
ork (C

alls to Sim
ulator)

Asynch.

Sync.
Async.

Sync.
Async.

Sync.

 Avg. Idle Time Avg. Work Time Calls to Simulator

Figure 1. Numerical results on 3 problems;
our asynchronous method (left) is faster
than synchronous (right). Orange bars show
actual work time and yellow shows idle time.
Green triangles indicate calls to the
simulator; the asynchronous method makes
more calls but is still faster due to its
efficiency.

This year, we have extended our methods to
handle linear and nonlinear constraints. This
is a major advancement and means that
more complicated nonlinear programming
problems can now be solved. Moreover, our
convergence theory proves that these

methods converge to a constrained
stationary point – i.e., a true mathematical
solution that is as good as would be
achieved using derivative-based methods (if
that were an option).

Because these methods are easy to use and
robust, they are proving useful in a wide
variety of scientific domains. Published
examples of the use of APPSPACK include
parameter estimation for thermal design,
microfluidics channel design, forging
process design for structure strength,
transmembrane protein structure prediction,
optimal pump placement and rate
calculation for groundwater flow, fitting
statistical models for image processing, and
optimal control of a fed-batch fermentation
process. Our codes have even found their
way into the computer and social sciences,
having recently been used for parameter
tuning for support vector machines and in
social dynamics modeling.

Our methods are implemented in the code
APPSPACK, which is freely downloadable
from http://software.sandia.gov/appspack
under the terms of the GNU L-GPL license.
Version 5.0 was released on June 30, 2006
and now supports linear equality and
inequality constraints. APPSPACK runs in
parallel using MPI (see Figure 2), and it
interfaces with the simulation via file I/O,
meaning that the simulation can be written
any language.

In the past year, one paper appeared in the
SIAM Journal on Optimization, another was
accepted for future publication in the same
journal, a third was accepted to the ACM
Transactions on Mathematical Software,
and a fourth was submitted to the SIAM
Journal on Scientific Computing. We are
active in the community, presenting invited
lectures at scientific meetings.

Figure 2: An illustration of APPSPACK
running in parallel on 3 processors.

We will continue to work on the
development of methods to handle problems
with nonlinear constraints. This involves
solving a sequence of linearly-constrained
subproblems. We are developing
convergence theory as well as implementing
and testing the methods. We will also
further our examination of why these
methods behave so well in the presence of
noise even though the convergence theory
does not account for it. To do this, we are
developing new convergence theory that
explains this good behavior and offers some
clues on to how to best select algorithmic
parameters in the presences of noise.

Our work with applications has been aided
by our colleagues at Sandia National
Laboratories. Our theoretical work has been
in collaboration with Prof. Virginia Torczon
and Prof. R. Michael Lewis at the College of
William and Mary in Virginia, as well as
Prof. Richard Byrd from the University of
Colorado at Boulder. The development of
the APPSPACK software has also been
partly supported by the NNSA.

For further information on this subject contact:
Dr. Anil Deane, Program Manager
Mathematical, Information, and Computational
 Sciences Division
Office of Advanced Scientific Computing Research
deane@mics.doe.gov

http://software.sandia.gov/appspack
mailto:deane@mics.doe.gov

